Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
BMC Oral Health ; 24(1): 469, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632580

RESUMEN

BACKGROUND: Oral leukoplakia (OLK) is a prevalent precancerous lesion with limited non-pharmacological treatment options. Surgery and various lasers are the mainstay of treatment; however, their relative efficacy and optimal choice remain unclear. This first network meta-analysis compared the effects of different lasers and surgical excision on post-treatment recurrence and comfort in OLK patients. METHODS: We searched four databases for relevant randomized controlled trials (RCTs) up to April 2023. The primary outcome was post-treatment recurrence, and secondary outcomes included intraoperative hemorrhage and postoperative pain scores. The Cochrane Risk of Bias tool was used to assess the study quality. Meta-analysis and network meta-analysis were employed to determine efficacy and identify the optimal intervention. RESULTS: A total of 11 RCTs including 917 patients and 1138 lesions were included. Er,Cr:YSGG laser treatment showed significantly lower recurrence rates compared to CO2 laser (OR: 0.04; 95% CI: 0.01-0.18), CO2 laser with margin extension (OR: 0.06; 95% CI: 0.01-0.60), Er:YAG laser (OR: 0.10; 95% CI: 0.03-0.37), electrocautery (OR: 0.03; 95% CI: 0.00-0.18), and standard care (OR: 0.08; 95% CI: 0.02-0.33). Er,Cr:YSGG laser also ranked the best for reducing recurrence, followed by standard care and CO2 laser combined with photodynamic therapy (PDT). Er:YAG and Er:Cr:YSGG lasers minimized bleeding and pain, respectively. None of the interventions caused severe adverse effects. CONCLUSION: For non-homogeneous OLK, Er:YAG, Er:Cr:YSGG, and CO2 laser combined with PDT offer promising alternatives to surgical excision, potentially reducing recurrence and improving patient comfort. Further high-quality RCTs are necessary to confirm these findings and determine the optimal laser-PDT combination for OLK treatment.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Humanos , Metaanálisis en Red , Dióxido de Carbono/uso terapéutico , Comodidad del Paciente , Leucoplasia Bucal , Láseres de Estado Sólido/uso terapéutico
2.
Med Biol Eng Comput ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622437

RESUMEN

Mandibular defect repair has always been a clinical challenge, facing technical bottleneck. The new materials directly affect technological breakthroughs in mandibular defect repair field. Our aim is to fabricate a scaffold of advanced biomaterials for repairing of small mandibular defect. Therefore, a novel dual-channel scaffold consisting of silk fibroin/collagen type-I/hydroxyapatite (SCH) and polycaprolactone/hydroxyapatite (PCL/HA) was fabricated by cryogenic 3D printing technology with double nozzles. The mechanical properties and behaviors of the dual-channel scaffold were investigated by performing uniaxial compression, creep, stress relaxation, and ratcheting experiments respectively. The experiments indicated that the dual-channel scaffold was typical non-linear viscoelastic consistent with cancellous tissue; the Young's modulus of this scaffold was 60.1 kPa. Finite element analysis (FEA) was employed performing a numerical simulation to evaluate the implantation effect in mandible. The stress distribution of the contact area between scaffold and defect was uniform, the maximum Mises stress of cortical bone and cancellous bone in defect area were 54.520 MPa and 3.196 MPa, and the maximum displacement of cortical bone and cancellous bone in defect area were 0.1575 mm and 0.1555 mm respectively, which distributed in the incisor region. The peak maximum Mises stress experienced by the implanted scaffold was 3.128 × 10-3 MPa, and the maximum displacement was 6.453 × 10-2 mm distributed near incisor area. The displacement distribution of the scaffold was consistent with that of cortical and cancellous bone. The scaffold recovered well when the force applied on it disappeared. Above all, the dual-channel scaffold had excellent bio-mechanical properties in implanting mandible, which provides a new idea for the reconstruction of irregular bone defects in the mandible and has good clinical development prospects.

3.
Phys Chem Chem Phys ; 26(15): 11182-11207, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567530

RESUMEN

Photocatalytic technology is a novel approach that harnesses solar energy for efficient energy conversion and effective pollution abatement, representing a rapidly advancing field in recent years. The development and synthesis of high-performance semiconductor photocatalysts constitute the pivotal focal point. Oxygen vacancies, being intrinsic defects commonly found in metal oxides, are extensively present within the lattice of semiconductor photocatalytic materials exhibiting non-stoichiometric ratios. Consequently, they have garnered significant attention in the field of photocatalysis as an exceptionally effective means for modulating the performance of photocatalysts. This paper provides a comprehensive review on the concept, preparation, and characterization methods of oxygen vacancies, along with their diverse applications in nitrogen fixation, solar water splitting, CO2 photoreduction, pollutant degradation, and biomedicine. Currently, remarkable progress has been made in the synthesis of high-performance oxygen vacancy photocatalysts and the regulation of their catalytic performance. In the future, it will be imperative to develop more advanced in situ characterization techniques, conduct further investigations into the regulation and stabilization of oxygen vacancies in photocatalysts, and comprehensively comprehend the mechanism underlying the influence of oxygen vacancies on photocatalysis. The engineering of oxygen vacancies will assume a pivotal role in the realm of semiconductor photocatalysis.

4.
Nanoscale ; 16(9): 4620-4627, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38323483

RESUMEN

Construction of a built-in electric field has been identified as an attractive improvement strategy for photoelectrochemical (PEC) water splitting by facilitating the carrier extraction from the inside to the surface. However, the promotion effect of the electric field is still restrained by the confined built-in area. Herein, we construct a microscale built-in electric field via gradient oxygen doping. The octahedral configuration of the synthesized CdIn2S4 (CIS) provides a structural basis, which enables the subsequent oxygen doping to reach a depth of ∼100 nm. Accordingly, the oxygen-doped CIS (OCIS) photoanode exhibits a microscale built-in electric field with band bending. Excellent PEC catalytic activity with a photocurrent density of 3.69 mA cm-2 at 1.23 V vs. RHE is achieved by OCIS, which is 3.1 times higher than that of CIS. Combining the results of thorough characterization and theoretical calculations, accelerating migration and separation of charge carriers have been determined as the reasons for the improvement. Meanwhile, the recombination risk at the doping centers has also been reduced to the minimum via optimal experiments. This work provides a new-generation idea for constructing a built-in electric field from the view point of bulky configuration towards PEC water splitting.

5.
BMJ Open ; 14(2): e079825, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365289

RESUMEN

OBJECTIVES: To examine changes in the 30-day surgical mortality rate after common surgical procedures during the COVID-19 pandemic and investigate whether its impact varies by urgency of surgery or patient race, ethnicity and socioeconomic status. DESIGN: We used a quasi-experimental event study design to examine the effect of the COVID-19 pandemic on surgical mortality rate, using patients who received the same procedure in the prepandemic years (2016-2019) as the control, adjusting for patient characteristics and hospital fixed effects (effectively comparing patients treated at the same hospital). We conducted stratified analyses by procedure urgency, patient race, ethnicity and socioeconomic status (dual-Medicaid status and median household income). SETTING: Acute care hospitals in the USA. PARTICIPANTS: Medicare fee-for-service beneficiaries aged 65-99 years who underwent one of 14 common surgical procedures from 1 January 2016 to 31 December 2020. MAIN OUTCOME MEASURES: 30-day postoperative mortality rate. RESULTS: Our sample included 3 620 689 patients. Surgical mortality was higher during the pandemic, with peak mortality observed in April 2020 (adjusted risk difference (aRD) +0.95 percentage points (pp); 95% CI +0.76 to +1.26 pp; p<0.001) and mortality remained elevated through 2020. The effect of the pandemic on mortality was larger for non-elective (vs elective) procedures (April 2020: aRD +0.44 pp (+0.16 to +0.72 pp); p=0.002 for elective; aRD +1.65 pp (+1.00, +2.30 pp); p<0.001 for non-elective). We found no evidence that the pandemic mortality varied by patients' race and ethnicity (p for interaction=0.29), or socioeconomic status (p for interaction=0.49). CONCLUSIONS: 30-day surgical mortality during the COVID-19 pandemic peaked in April 2020 and remained elevated until the end of the year. The influence of the pandemic on surgical mortality did not vary by patient race and ethnicity or socioeconomic status, indicating that once patients were able to access care and undergo surgery, surgical mortality was similar across groups.


Asunto(s)
COVID-19 , Etnicidad , Humanos , Anciano , Estados Unidos/epidemiología , Medicare , Pandemias , Clase Social
6.
Sci Rep ; 14(1): 1217, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216581

RESUMEN

Magnetic core-shell Fe3O4@SiO2 nanoparticles were synthesized by sol-gel method. Based on the characterization and experimental results, the adsorbent was found to have an average particle size of approximately 120 nm, a pore size range of 2-5 nm and superparamagnetic properties. It exhibited electrostatic and hydrogen bonding interactions during adsorption of methyl orange (MO). The adsorption of MO on the magnetic Fe3O4@SiO2 nanoparticles exhibited pseudo-second-order kinetics, the adsorption process is a spontaneous endothermic adsorption process, which conforms to the Langmuir adsorption isotherm model. he maximum amount of MO was adsorbed at pH = 2, T = 45 °C and t = 30 min, and the highest adsorption capacity was 182.503 mg/g; The unit adsorption capacity of the Fe3O4@SiO2 nanoparticles still reached 83% of the original capacity after 5 cycles, so the material was reusable and met the requirements of environmental protection. This study reveals the great potential of magnetic mesoporous nanoparticles for removal of dyes from wastewater.

7.
Neurochem Int ; 172: 105656, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081419

RESUMEN

Microglia, as the intrinsic immune cells in the brain, are activated following ischemic stroke. Activated microglia participate in the pathological processes after stroke through polarization, autophagy, phagocytosis, pyroptosis, ferroptosis, apoptosis, and necrosis, thereby influencing the injury and repair following stroke. It has been established that polarized M1 and M2 microglia exhibit pro-inflammatory and anti-inflammatory effects, respectively. Autophagy and phagocytosis in microglia following ischemia are dynamic processes, where moderate levels promote cell survival, while excessive responses may exacerbate neurofunctional deficits following stroke. Additionally, pyroptosis and ferroptosis in microglia after ischemic stroke contribute to the release of harmful cytokines, further aggravating the damage to brain tissue due to ischemia. This article discusses the different functional states of microglia in ischemic stroke research, highlighting current research trends and gaps, and provides insights and guidance for further study of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Microglía/metabolismo , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular/metabolismo , Isquemia/metabolismo
8.
Inorg Chem ; 63(2): 1214-1224, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159054

RESUMEN

Spin transition (ST) compounds have been extensively studied because of the changes in rich physicochemical properties accompanying the ST process. The study of ST mainly focuses on the temperature-induced spin transition (TIST). To further understand the ST, we explore the pressure response behavior of TIST and pressure-induced spin transition (PIST) of the 2D Hofmann-type ST compounds [Fe(Isoq)2M(CN)4] (Isoq-M) (M = Pt, Pd, Isoq = isoquinoline). The TISTs of both Isoq-Pt and Isoq-Pd compounds exhibit anomalous pressure response, where the transition temperature (T1/2) exhibits a nonlinear pressure dependence and the hysteresis width (ΔT1/2) exhibits a nonmonotonic behavior with pressure, by the synergistic influence of the intermolecular interaction and the distortion of the octahedral coordination environment. And the distortion of the octahedra under critical pressures may be the common behavior of 2D Hofmann-type ST compounds. Moreover, ΔT1/2 is increased compared with that before compression because of the partial irreversibility of structural distortion after decompression. At room temperature, both compounds exhibit completely reversible PIST. Because of the greater change in mechanical properties before and after ST, Isoq-Pt exhibits a more abrupt ST than Isoq-Pd. In addition, it is found that the hydrostatic properties of the pressure transfer medium (PTM) significantly affect the PIST due to their influence on spin-domain formation.

9.
BMJ ; 383: e075484, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993130

RESUMEN

OBJECTIVE: To determine whether patient-surgeon gender concordance is associated with mortality of patients after surgery in the United States. DESIGN: Retrospective observational study. SETTING: Acute care hospitals in the US. PARTICIPANTS: 100% of Medicare fee-for-service beneficiaries aged 65-99 years who had one of 14 major elective or non-elective (emergent or urgent) surgeries in 2016-19. MAIN OUTCOME MEASURES: Mortality after surgery, defined as death within 30 days of the operation. Adjustments were made for patient and surgeon characteristics and hospital fixed effects (effectively comparing patients within the same hospital). RESULTS: Among 2 902 756 patients who had surgery, 1 287 845 (44.4%) had operations done by surgeons of the same gender (1 201 712 (41.4%) male patient and male surgeon, 86 133 (3.0%) female patient and female surgeon) and 1 614 911 (55.6%) were by surgeons of different gender (52 944 (1.8%) male patient and female surgeon, 1 561 967 (53.8%) female patient and male surgeon). Adjusted 30 day mortality after surgery was 2.0% for male patient-male surgeon dyads, 1.7% for male patient-female surgeon dyads, 1.5% for female patient-male surgeon dyads, and 1.3% for female patient-female surgeon dyads. Patient-surgeon gender concordance was associated with a slightly lower mortality for female patients (adjusted risk difference -0.2 percentage point (95% confidence interval -0.3 to -0.1); P<0.001), but a higher mortality for male patients (0.3 (0.2 to 0.5); P<0.001) for elective procedures, although the difference was small and not clinically meaningful. No evidence suggests that operative mortality differed by patient-surgeon gender concordance for non-elective procedures. CONCLUSIONS: Post-operative mortality rates were similar (ie, the difference was small and not clinically meaningful) among the four types of patient-surgeon gender dyads.


Asunto(s)
Medicare , Cirujanos , Humanos , Anciano , Masculino , Femenino , Estados Unidos/epidemiología , Estudios Retrospectivos , Hospitales , Pacientes , Mortalidad Hospitalaria
10.
Heliyon ; 9(11): e21123, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920498

RESUMEN

Introduction: To repair cartilage defect as well as the calcified cartilage layer (CCL) and bone tissue, there is need to fabricate a three-phase complex that mimics the natural cartilage tissue. Materials and methods: SF/Col-Ⅱ/HA scaffolds were constructed by low-temperature 3D printing, and to prepare a three-phase complex. The microstructure were showed using a SEM image analysis program. To observe collagen and glycosaminoglycan expression and analyze morphometric parameters, HE staining was performed to reveal new cartilage. Immunohistochemical were performed to investigate the collagen content and defect repair status in the new cartilage group in vitro and vivo. Results: Physical and biochemical properties and biocompatibility of three-phase complex met the requirements of constructing tissue-engineered cartilage. The OD values increased gradually at different time points. With increasing culture time, the OD values showed an upward trend. The HE and immunohistochemical staining results showed that new cartilage had formed at the defect and new cartilage formation occurred during in vivo repair. Conclusion: 3DP-anchored three-phase complexes have good physical and biochemical properties and biocompatibility and thus represent an alternative cartilage tissue engineering material.

11.
Cell Biosci ; 13(1): 161, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667400

RESUMEN

Adipose tissue is essential for maintaining systemic metabolic homeostasis through traditional metabolic regulation, endocrine crosstalk, and extracellular vesicle production. Adipose dysfunction is a risk factor for cardiovascular diseases. The heart is a traditional pump organ. However, it has recently been recognized to coordinate interorgan cross-talk by providing peripheral signals known as cardiokines. These molecules include specific peptides, proteins, microRNAs and novel extracellular vesicle-carried cargoes. Current studies have shown that generalized cardiokine-mediated adipose regulation affects systemic metabolism. Cardiokines regulate lipolysis, adipogenesis, energy expenditure, thermogenesis during cold exposure and adipokine production. Moreover, cardiokines participate in pathological processes such as obesity, diabetes and ischemic heart injury. The underlying mechanisms of the cardiac-to-adipose axis mediated by cardiokines will be further discussed to provide potential therapeutic targets for metabolic diseases and support a new perspective on the need to correct adipose dysfunction after ischemic heart injury.

12.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660921

RESUMEN

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

13.
Front Aging Neurosci ; 15: 1249512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744388

RESUMEN

Background: There are discrepancies of olfactory impairment between Alzheimer's disease (AD) and other neurodegenerative disorders. Olfactory deficits may be a potential marker for early and differential diagnosis of AD. We aimed to assess olfactory functions in patients with AD and other neurodegenerative disorders, to further evaluate the smell tests using subgroup analysis, and to explore moderating factors affecting olfactory performance. Methods: Cross-sectional studies relating to olfactory assessment for both AD and other neurodegenerative disorders published before 27 July 2022 in English, were searched on PubMed, Embase and Cochrane. After literature screening and quality assessment, meta-analyses were conducted using stata14.0 software. Results: Forty-two articles involving 12 smell tests that evaluated 2,569 AD patients were included. It was revealed that smell tests could distinguish AD from mild cognitive impairment (MCI), Lewy body disease (LBD), depression, and vascular dementia (VaD), but not from diseases such as frontotemporal dementia (FTD). Our finding indicated that in discriminating AD from MCI, the University of Pennsylvania Smell Identification Test (UPSIT) was most frequently used (95%CI: -1.12 to -0.89), while the Brief Smell Identification Test (B-SIT), was the most widely used method in AD vs. LBD group. Further subgroup analyses indicated that the methods of smell test used contributed to the heterogeneity in olfactory threshold and discrimination scores in group AD vs. MCI. While the moderating variables including age, MMSE scores, education years in AD vs. LBD, were account for heterogeneity across studies. Conclusion: Our finding suggests smell tests have potential value in early differential diagnosis of AD. UPSIT and its simplified variant, B-SIT, are widely used methods in the analyses. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID = 357970 (PROSPERO, registration number CRD42022357970).

14.
ACS Synth Biol ; 12(10): 2789-2801, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37729546

RESUMEN

Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.


Asunto(s)
Células Artificiales , Células Artificiales/metabolismo , Transducción de Señal , Lípidos
15.
Langenbecks Arch Surg ; 408(1): 354, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697006

RESUMEN

OBJECTIVE: To investigate short-term efficacy of direct laparoscopic-assisted radical gastrectomy (LAG) versus non-curative endoscopic submucosal dissection (ESD) plus additional LAG for early gastric cancer. MATERIALS AND METHODS: 286 patients were retrospectively assigned into two groups: direct LAG group (n = 255) and additional LAG (ESD plus LAG, n = 31) group. A 1:2 propensity score matching was performed to equalize relevant confounding factors between two groups for analysis. RESULTS: Ninety-three patients were successfully matched, including 62 in the direct LAG group and 31 in the additional LAG group. A significant (P = 0.013) difference existed in the drainage removal time between the additional LAG and direct LAG group (7 d vs. 6 d). Age, sex, tumor location and surgical approach were significantly (P < 0.05) associated with complications, with age ≥ 60 years (P = 0.002) and total gastrectomy (P = 0.011) as significant independent risk factors. A significant (P = 0.023) difference existed in the surgical time between the early and late groups (193.3 ± 37.6 min vs. 165.5 ± 25.1 min). CONCLUSION: Additional LAG (D1 + lymphadenectomy) after ESD may be safe and effective even though non-curative ESD may prolong the drainage removal time and increase the difficulty of surgery.


Asunto(s)
Resección Endoscópica de la Mucosa , Laparoscopía , Neoplasias Gástricas , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias Gástricas/cirugía , Gastrectomía
16.
Chem Sci ; 14(30): 8018-8046, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37538812

RESUMEN

In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.

17.
Biosens Bioelectron ; 240: 115643, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37651949

RESUMEN

As an important emerging pollutant, antibiotic resistance genes (ARGs) monitoring is crucial to protect the ecological environment and public health, but its rapid and accurate detection is still a major challenge. In this study, a new single-labeled dual-signal output ratiometric electrochemical genosensor (E-DNA) was developed for the rapid and highly sensitive detection of ARGs using a synergistic signal amplification strategy of T3C2@Au nanoparticles (T3C2@AuNPs) and isothermal strand displacement polymerase reaction (ISDPR). Specially, two-dimensional monolayer T3C2 nanosheets loaded with uniformly gold nanoparticles were prepared and used as the sensing platform of the E-DNA sensor. Benefiting from excellent conductivity and large specific surface area of Ti3C2@AuNPs, the probe immobilization capacity of the E-DNA sensor is doubled, and electrochemical response signals of the E-DNA sensor were significantly improved. The proposed single-labeled dual-signal output ratiometric sensing strategy exhibits three to six times higher sensitivity for the sul2 gene than the single-signal sensing strategy, which significantly reduces cost meanwhile retaining the advantages of high sensitivity and reliability offered by conventional dual-labeled ratiometric sensors. Coupled with ISDPR amplification technology, the E-DNA sensor has a wider linear range from 10 fM to 10 nM and a limit of detection as low as 2.04 fM (S/N=3). More importantly, the E-DNA sensor demonstrates excellent specificity, good stability and reproducibility for target ARGs detection in real water samples. The proposed new sensing strategy provides a highly sensitive and versatile tool for the rapid and accurate quantitative analysis of various ARGs in environmental water samples.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro , Reproducibilidad de los Resultados , Titanio , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Agua
18.
J Cancer Res Clin Oncol ; 149(15): 13925-13942, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541976

RESUMEN

PURPOSE: Disulfidptosis is a novel type of cell death induced by disulphide stress that depends on the accumulation of cystine disulphide, causing cytotoxicity and triggering cell death. However, the direct prognostic effect and regulatory mechanism of disulfidptosis-related genes in bladder urothelial carcinoma (BLCA) remain unclear. METHODS: To explore the role of 10 disulfidptosis-related genes, the multiomic data of 10 genes were comprehensively analysed. Next, based on seven disulfidptosis-related differentially expressed genes, a novel disulfidptosis-related gene score was developed to help predict the prognosis of BLCA. Immunohistochemistry, EDU, Real-time PCR and western blot were used to verify the model. RESULTS: Significant functional differences were found between the high- and low-risk score groups, and samples with a higher risk score were more malignant. Furthermore, the tumour exclusion and Tumour Immune Dysfunction and Exclusion scores of the high-risk score group were higher than those of the low-risk score group. The risk score was positively correlated with the expression of immune checkpoints. Drug sensitivity analyses revealed that the low-risk score group had a higher sensitivity to cisplatin, doxorubicin, docetaxel and gemcitabine than the high-risk score group. Moreover, the expression of the TM4SF1 was positively correlated with the malignancy degree of BLCA, and the proliferation ability of BLCA cells was reduced after knockdown TM4SF1. CONCLUSION: The present study results suggest that disulfidptosis-related genes influence the prognosis of BLCA through their involvement in immune cell infiltration. Thus, these findings indicate the role of disulfidptosis in BLCA and its potential regulatory mechanisms.

19.
Inorg Chem ; 62(29): 11674-11681, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37417932

RESUMEN

Two high-pressure stable phases (I41/a-CeN4 and R3̅m-CeN6) and two metastable phases (P6mm-CeN14 and P6mm-CeN17) were proposed in Ce-N compounds at 150-300 GPa. The polymeric nitrogen units include quadruple helical chains, N6 rings, and first reported layered molecular sieves structures. I41/a-CeN4 can be quenched to ambient conditions and its thermal stability can be maintained up to 500 K. P6mm-CeN14 is dynamically and mechanically stable at ambient pressure. The electronic properties analyses show that charge transfer between the Ce and N atoms makes a significant contribution to the structural stability by promoting the formation of Ce-N ionic bond and N-N covalent bond. The Ce atom provides a suitable coordination environment and an excellent bonding state for the fully sp3 hybridized layered molecular sieve to enhance the stability of P6mm-CeN14. Surprisingly, the energy density (8.45 kJ/g) and explosive performance of P6mm-CeN14 are the highest among all metal polynitrides, refreshing a new record for high-energy metal polynitrides.

20.
ACS Biomater Sci Eng ; 9(8): 4980-4993, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37428513

RESUMEN

It has been well demonstrated that a dynamic culture environment improves tissue-engineered bone formation in vitro, but little is known about how cyclical mechanical loading induced bone formation in scaffolds in situ. To mimic the organic and inorganic components and multilevel structure of a bony microenvironment, hydroxyapatite/ß tricalcium phosphate/silk fibroin(HA/ß-TCP/SF) composite scaffolds with macro- and micropores were fabricated in this study. The mechanical properties and structure of the scaffolds were adjusted based on the ratio of organic and inorganic components and three-dimensional (3D) printing parameters. Dynamic sinusoidal loading with different frequencies was applied to the composite scaffold. Mouse bone precursor cells MC3T3-E1 were seeded on the scaffolds, and the cell compatibility of the scaffolds was investigated by MTT, SEM, and HE. The effect of the loading on bone formation in the scaffold in situ was investigated in a rabbit tibia defect model. The scaffold showed viscoelasticity and hysteresis under dynamic sinusoidal loading with different frequencies. With an increase in HA/ß-TCP, the stress and modulus of the scaffolds increased. MTT, SEM, and HE results showed that MC3T3-E1 cells could adhere and proliferate on the composite scaffolds. After loading in vivo, the quantity of newly formed bone and the bone volume fraction increased. Micro-CT, undecalcified Van Gieson (VG) staining, and fluorescent double-labeling results suggested that appropriate cyclical mechanical loading at frequencies of 1 and 10 Hz had positive effects on bone formation in situ and it may play a role in clinical bone defect repair.


Asunto(s)
Regeneración Ósea , Andamios del Tejido , Ratones , Animales , Conejos , Andamios del Tejido/química , Temperatura , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...